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STATISTICS OF NONLINEARLY TRANSFORMED
COHERENCE ESTIMATES

INTRODUCTION

Previous results on the statistics of the magnitude-squared-coherence (MSC)
ostimate C and the magnitude-coherence (MC) estimate (’“ have required sim-
pification of by pergeometric functions ;F.. sometimes with great labor (references
1-4). This effort has been required because of the paucity of asymptotic results for
the F, tunction. in reference 4, this shortcoming was partially alleviated by
deriving assmptode resalts for the MSC estimate, and doing curve-fiting for the
MC esimaie, therebs obraining relatively simple relations for the bias, variance,
and mean-square error in these two cases.,

However, whenever a ditterent nonlinear transformation of 1he MSC estimate is
considered, the anaivticat effort must begin anew to determine the fundamenial
bhehavior of the statisties such as moments, For example, in reterence 5, the non-
linear transtormation are tanh ((‘L‘ ) of MSC estimate ¢ was shown to yield a nearly-
Gaussian random variable, thereby faciitating caleulation of confidence limits for
conereece detectors. However, the mean and variance of the nearly Gaussian
random variable were deduced by a time-consuming trial-and-error curve-fitting
procedure.

Here, we will rectify this sitgation by deriving simple asymptotic relations, for
large N, for the statistics of any nonlinear transformation of ¢, where N is the
number of data pieces employed in the estimation oi coherence (referénce 6). In this
tashion, we can determine the fundamental behavior of statistics like the bias,
variance, and mean-square error for a particular distortion of é without an undue
amount of labor. Also, we can deduce new nonlinear transformations with desirable

behavior.
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ESTIMATION OF MAGNITUDE-SQUARED COHERENCE
The comples coherence between two jointly-stationary random processes (1) and
v(t) is detined as
G. (£)
Xy

vy, (f) = »
SO CROR R 6

where G (1) is the cross-spectral density at frequency f, and G (1) and G () are
the auto-spectral aensities. The MSC s '

(1

C(e) = |y, (0]

2)

The MSC is frequently estimated according to (reference 6)

N 2
~ *
X 6. (6)]? 2 %) Y(®)
- Xy - n=1
C) = - - N X L€ )
G () 6, () 20 X (D" 3 ¥ (D]

=] n=1

where N is the number of data segments employed, and X (f), Y (f) are the
(discrete) Fourier transforms of the n-th weighted data segments of x(1) and y(t).

The statistics of a nonlinearly transformed version g(e) of MSC estimate Care of
interest here. We drop frequency dependence t henceforth, for notational sim-
plicity; thus C is the true (unknown) value of MSC that we are estimating.




AVERAGE VALUE OF TRANSFORMED COHERENCE ESTIMATE

oy . . . . e . AL . N
The probability density function of MSC estimace Cis given by reference 1, ¢q. (2)
et seq., as

\2 . N-2
_ 1-¢C a-0a - 1+ Cx
p(x) = (N -1) (1 ~ CX) 1 - Cx X)] PN-—l (1 - Ci)

foroixil,oic<1‘, (4)

where Py is a Legendre polynomial. If Cis subjected to nonlinear transformation
2(C), the average value of the output is

a 1
A = E{g(C)) =[O dx p(x) g(x) . "

For large N, probability density p(x) is peaked about* x=C; see reference 1,
figures la-lTh. Accordingly, the major contribution 1o (5) will come from this
ncighborhood, so we expand transformation g about this point:

1 o o
1 1
nef T g sPo w0t T sy,

where

1 n
v afo dx p(x) (x - C) o

is the n-th moment of estimate ¢ about true value C.

An expression for general moment E{é'"} is given in reference 4, page 2, along
with specific simpler results, for m=1 and 2, in terms of the Gauss hypergeometric
function ,F,. In appendix A here, v, and v, are developed in an asymplotic ex-
pansion through order N-2; in appendix B, the dominant behavior of v is developed
tor all integer n. The results are

2

.0-0% x0 -0
= 3

-3
1 N + O(N ) H

N (8)

v

_2ca-0f,20-0% 0 -6+ ch

v
2 N N2

+ O(N-S) ;9

. . - . . hl . . -
*For C =1, p(x) = dix-1), whereas Tor C = 0, piv) = (IN-DO-9N20 We enelude these aty pical cases from
consideration here. These probability density tunctions tor C = 1 and C - 0 are sutficienty simple that
they can be investigated separatels
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for n even

(n/2)! N2
Vo~ as N + = ;
n

n=1
C>0
atc?2 (1-0"[1+c+n1-30)]
\ e ] for n odd
2 (ﬁ)- N 2
) (10)

In particular, it is seen that v, and v, are O(N-1), vy and v, are O(N-9), and v, for n2§
is O(N Y or smaller.

Combining these results in (6), we obtain for the average value of the device

output:
(1 - C)Z ' "
A =g(C) + N (g (C) + Cg (O))
a-o?[,. 2y o
$ A [ZCg () + (1 - 6c + 7¢%) g''(©)
N

+2C(1 - C)(1 - 2¢) &"(C) + % c?a - 02 g“"(C)] + ON"3,
(n
This result gives the fundamental dependence on N, C, and transformation g.
Through O(N-1), we need to evaluate the nonlinear function and its first 1wo

derivatives, but to be correct to O(N-2), it is necessary to evaluate up through the
fourth derivative of the nonlinear function.

The bias at the output of the nonlinear device is defined as

B = E{g(é)} - g€y =A-g) ,
(12)

and is given by the terms after g(C) in (11). [t is generally of O(N-1): this will be
elaborated on later.

A particular example of the appiication of (11) is afforded by transformation
g(x) = x. Then the device output is just the MSC estimate, and (12) yields bias

2

s . (1 -0% 20 -0
- 2

-3
N . +oN Ty, (13)

in agreement with reference 4, eq. (8).




TR 6445

ALTERNATIVE FORMS FOR AVERAGE VALUE

First-Qrder Approximations

Let us retain only the terms through O(N Ny 41 and 12); then

2 H
A~g(c)+-(—1—;l-—c-)—-[g'(C)+Cg (C)] as N » o |

(14)
and
(1 - C)Z ' "
B~ 2 [¢' (©) + Cg ©) asN->w
(15
Now we approximate the right-hand side of (14) by the quantity
- a(C)>
Ay @ g<c MY ’ (16)
which ¢an be developed as
A~e@ + 28 ) asNae
(amn

and we choose a(C) so that (14) and (17) match as N becomes large. There follows
the approximation to the average,

2 rr
A =gfcr S [1+C-——g (C)]

N '
©)
& (18)
The bias approximation follows from (12) and (18) as
(1 C)2 “(C
B, zglc+ =24 |1 +c8) ) - g(C)
1 N gr ©)
(19)

Forms (18) and (19) turn out to be more useful than (14) and (15). respectively, in
some cases. For the MSC estimate itself, g(x) = x, and the results vielded by (18) and
(19) are identical to (14) and (15), respectively.

. A,
For the MC estimate €', we have




4
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- 1 -
glx) = xl/z, g (x) = %—x 1/2, g'(x) ==z x S (20)
Then the equations above vield
2
A~C1/2+(1'C)

as N » = 5
4NC172 2n

21/2
] (1-c)
Az'(c"‘__zﬁ_> ;

(22)
2
B~(1'(1:}2 as N+ = , (23)
4NC
\1/2
_ a-a0 1/2
By = (? M I -C : (24)

Whereas (21) and (23) blow up as C—0, (22) and (24} remain finite. In fact, (24) is
precisely the result obtained by curve-fitting in reference 4, page (20), eqgs. (39) and
(33), to O(N-").

This is a fortuitous situation for approximations (22) and (24). In the derivations
above, it was presumed that transformation g(x) could be well approximated in
terms of a few derivatives at x=C and that C>0. These conditions are obviously
violated for MC device (20) as C—0; nevertheless, forms (22) and (24) are stuill
reasonable in this limit. This situation will arise tor other nonlinear transformations
considered below. The basic problem is that (21) is not a uniform asymptotic ex-
pansion with respect to C (reference 7, chapter 9); it holds as N—oo, for fixed C>0.

For the transformation vielding a nearly Gaussian random variable, discussed in
the Introduction and studied in reference 5, we have
1

g(x) = arc tanh(xl/z), g'(x) = —— >
2777 (1 - x)
" 3x -1
g (x) = . (25)
4x3/2(1 - x)2

Application of (14), (15), (18), and (19) yiclds

/2)+1+C

as N+ = |
anc/? (26)

A ~ arc tanh(C1




> 1/2
1-c )

Al = arc tanh <(C YN s 27

1+ ¢C

B ~ as N + o |
4.:C1/2 (28)
1 - C2

B, = arc tanh (C + ~N ) - arc tanh(C) . (29)

Result (27) agrees with reference 5, egs. (7) and (8). which was obtained only after
considerable rial and error and curve-fitting. Again, the approximations (27) and
(29) are better behaved than their progenitors (26) and (28), which blow up as C—~0.
As above, (26) is not a uniform asymptotic expansion with respect to C.

Finally, let us inquire into what nonlinear transformation would vield zero bias,
to O(N-1). Equation (15) indicates that the only such device must satisfv

d '
a {Cg Y} =0 . (30)
That is, the logarithmic transformation

g(x) = aIn(x) + b
(31

has sero bias, for any constants aand b, to O(N-1).

Second-Order Approximations

We now retain terms through O(N-2) in the average (11) and represent it by
shorthand notation;

as N » =

We now want to fit this asymptotic expansion by the approximation
- a(C) b(C)
Ay =8 (C M

1o O(N-2), Accordingly we develop (33) as

2
A - g(c) + g’ (C) igg + h(_c.).. + l g” (C) ﬂ as N *» =
: (5 N )2 N (34)
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Comparison of (32) and (34) viclds

a(C) = a(C) , b(C) = B(C) _ (o) GZ(C)

g (©) g'© 20g’'©]° (35)

where from (1), we already know

a©) = (1 -0 g ©@ + cg"©@],
) (36)
80 = (1 -0 [2cg’© « (1 - 50 7¢H) g

" 1 2 2 un
+20(1 -¢C) (1 -20) g"C) »5C°(1 -0 ¢ (C)] .

Equation (33), together with (35) and (36), gives the second-order approximation to
the average value. The resuldt Yor a(Cy in (35) s adentical to that obtained carlier in
(18): that tor bC) is quite mvobved and requires a specific ranstormation for
simplification.

The results for bias are now obtained by combiming (12 and (32).

B~QN£)+—-—B(C) as N » =

N2 ’ (37)

and by combining (12) and (33),

82 = g(C + arSC) + b—(g—)> - g(C)
N

(38)

Thus our general results 1o O(N -2y are given by (32), (33), (37), and (38), where the
various parameters are given in (35) and (36). Now we apply these results to specific
examples.

For the MSC estimate itself,

g =x, g’ (@) =1, g () =g =g =0 ,
and there tollows
asa=(1-0%b=8=20-072,
2 2
AmA,=c+ -0 220 -0
2 N 'N2 (40)

_a-0f, 20 -0?
2 N N




This fast refation has alrcady been noted in (13).

For the MC estimate, we have

1/2 ) 1 -
O I e O I O L
" 3 _-5/2 am 15 _-7/2
g (x) = gx /,g"(XJ ==1g X / (41)
Equation (36) vields
.4 -0l s (- )% (1« 30)°
- /2 - 3/2 ’
and (35) vields
(1 - C)2 Q- C)2 (1 +2C + SCZ)
as=~—a——,b= 8C
(43)

Then (32) and (33) vield, for the results on the average value for the MC estimate,

vz, 0-0%, a-0’av? L.

A~ C
anc!/? san%c¥/2 (441

1/2
woafe.0-0® a-0f 0., sc?
2 4 ’ 45)

2N 8N‘C

while (37) and (38) give the corresponding results on bias: namely, subtract €
from cach of the expressions in (44) and (45).

We now observe the disconcerting result that inclusion of the O(N 7} werm in
approximation (45) blows up at C =0, whereas the (N} term does fiot. This
suggests that, for small C, whereas approximation A, in (16) was well-suited to the
available information to O(N-!), there is a more suitable approximation than A, in
(33) when O(N-?) information is available on the average value; this possibility is
taken up in appendix C. Basically, the fact that (44) is not a uniform asympiotic
expansion, with respect to C, is causing this singularity at C =0. However, (44) and
{45) yield very good approximations for large N and C>0.

For the arc tanh (x' ') transformation, we augment (25) with the two additional
terms

" _ 3 - 10x + 15x2 ey = 3(35x3 - .'55x2 + 21x - 5)

g (x) = , 8 (%)
8x5/2(1 - x)3 16;(‘7/2 4

(1 - x)
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Then from (36),

2
a-‘—'——-l ;/g ,B=(1+C) (1 ;/gC+C) L (47)
4AC 32C
and trom (35)
aa1-¢ poa-cdasc-cd
2 ’ 8C : (48)

The average outpul can now be obtained from (32) and (33) in the forms

2
A ~ arc tanh (cl/z)+1"C L (1 +C) (1+6C+CT)

N »> o
1/2 2.3/2 as s
4NC 32N°C 49)
1/2
2 2 2
A, = arc tanh C+1'C+(1-C)(1+2c_c)
: N 8N2C
(50)

Since arc tanh (x':) ~ x': as x>0, the same behavior regarding the blowup at C =0
of the O(N-?) term is expected and present, just as for the MC estimate relations in
(44) and (45). The bias of the arc tanh (x'?) wransformation is obtained by sub-
tracting arc tanh (C':) from both forms in (49) and (50). A moditication of ap-
proximation (50), better suited (o small C, is developed in appendix C.

For the logarithmic transformation of the MSC estimate, we have
1 2

g(x) = In(x) g' x) = x77, g'x) = -x~%,
g'x) = Zx-s,g""(x) = -6x~? ; 1)
Equation (36) yields the surprising result
a=0, B=0, (52)
for which (35) immediately gives
a=20, b=20. (53)
Thus both (32) and (33) yield for the average value of the device output
A~A, = 1n(C) + O(N"%)
2 (54)

Thus the unbiased character of the logarithmic distortion holds to at least O(N 2),
not just (N 1) as claimed originally in (30) and (31). This behavior in (54) holds of
course for C>0, as noted earlier.




In appendix D, the average value of the Ingx) transtormation is derived exactly; it
is given by

A=-3 Q-0  for all C and N.
n
n=1 (55)

By completing the summation to infinity, and then subtracting this added quantity,
weean write (55) as

w n
A=1n(C)+Z(—1—1C—)-forC>O,
n=N n (56)

which has no approximations whatsoever. The summation in (56) is the bias and can
be upper-bounded by

N
(1 -0C) exp(N 1In{1-C))
< NG = ZXP NC for C > 0 . (57)

B

Thus the decay of the bias is exponential in N for fixed C>0. This explains why the
coefficients of N-! and N-2 were zero in (53); in fact, all coefficients of N-k would be
zero for k=1.

We should also observe (reference 8, eqs. 6.3.2 and 6.3.18) that average

N
. 1n(C)+-£l-§EEl for C > 0
A ~ as N » =
1 1
oy oI s+ =L forc = 0
P
: (58)

Thus as the number of picces, N, used in the MSC estimalte increases, the average A
saturates at In(C) for C#0, but gets arbitrarily negative for C=0. This is due to the
singularity of the transformation In(x) at x = 0.

The fast nonlinear transformation we consider is the v-th law device:

g(x) = xv, g(n)(x) = (v+1- n)n x T
(59A)
Substitution in (35) and (36) yields, after simplification,
@ = v2(1 _ C)Z c\)-1 ’
1 2 2 v-2 2
= = - 1 - 1
B=3zv@1-0"C [ v+ (1+v)Cl™ , (59B)

and
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v(l - C)2

[+
]

2
b = v(lz(-: C) ((1 + QZ - v(l -C) (1+3C)] , (60)

respectively. The average output of the v-th law device is then available upon
substitution of (60) in (32) or (33). These results reduce 10 (40) forv=1, and 10 (42)
through (45) for v=1/2. It can be scen from (60) that the only case where b does not
tend toinfinity, as C tends to zero, is for v= 1, the MSC estimate. All other cases do
not yicld a uniform asymptotic expansion in powers of N-I, with respect to C. A
modification of (60) to circumvent the singularity at C =0 is presented in appendix
C.




TR.6445

.

| VARIANCE OF TRANSFORMED COHERENCE ESTIMATE

' In order 1o determine the variance of the transtormed coherence estimate, we
; need to be able wo evaluate, in addition to (5), the average

1
i qQ = Eg?) =f
0

|
|
I

dx p(x) gz(x) =f dx p(x) q(x) ,
0 61

where we have defined 5
q(x) = g"(x) . (62)

But now we can use average output (11) on (61), with a re-identification of g in (11)
as g here. So we need the quantities (using an obvious shorthand notation)

q=g2,q =2 . q -2 +2g L q" -6
Q" = 2g¢" + 8g'g" + 6g'g" (63)
where all these functions are evaluated at C. There follows from (11),
Q=g+ &—N—C)—z (ge’+ Cgg” + Cg’g’] + ‘—1—29—2— [4cgg’
N

+2(1 - 6C + 7C2) (gg’’ + g'g")
+4C(1 - C) (1 -2C) (gg"’+ 3g’g™

, - (64)
e c21 - 02 (g™ v g g™ v 3g'g"M ]+ 00N )
The variance of the device output is then
_ 2
V - Q - A . (65)

Substitution of (11) (as is) and (64) in (65) and cancellation of a number of similar
terms yield the desired result for the variance of the device output :

2 2
- 1-C ’ 2
V=2C(1N Q¢ +(——F')—[glg(1-10C+13C)
. g'g"2C(1 - C) (5 - 11C) + g"g"2c’( - )2
t o 2 2 -3 (66)
gg 4c"(1-cC)7)+00NT)

Hereg'=g'(C), g’ '=g""(C), g''"=g'''(C). We observe, that to O(N-!), only the

first derivative, g '(C), is required for the variance; recall that to O(N-!), the ‘
average, (11), required g’ '(C) in addition. Also g’ "’ '(C) does not enter (66), at least
through O(N-2).

b e




The tirst example we apply (66) to is the MSC estimate, g(x) = x. There follows
immediately

20 -0°, Q- o’ a - 10c + 13¢%)

5 + O(N-S)

V =
2
N (67)

This result agrees with reference 4, eq. 9, to O(N-2) when the lauter is expanded in
powers of N-1,

Next consider the MC estimate as given in (41). Employment in (66) results in

2 2
(1-0° (1-0 21, o3
L 52— [1 + 2€ - 11C°] + O(N™)

8NC (68)

The first term in (68) agrees with that in reference 4, eq. (33), to O(N-!). The second
terms do not agree, due mainly to the C-! dependence in (68); that is, once again,
(68) is not a uniform asymptotic expansion with respect to C. A modification to the
singular contribution is considered in appendix E; the result is given by (E-2):

a-0° a-0a-s30

2N 2

V= ,
2N (69)

This modification for the variance of the MC estimate agrees precisely with the
terms through O(N-2) of reference 4, eq. (33), when the latter is developed in a
power series in N-1,

The pertinent equations for the arc tanh (x ) transformation are presented in (25)
and (46). Their use in (66) for the variance yields

2
1 - 6C -3
2—-1N- - —-Z_ic_ + O(N )
8N"C 70

V =

Tha! is, to O(N-1), the variance of the arc tanh (x':) output is independent of the
true value, C, of the MSC. This result has been noted and utilized before; see
reference 9 and reference 5, eq. (9). Furthermore, from (66), it may be seen that the
only device with variance independent of C, 10 O(N-1), is in fact q; arc tanh (x") +
q,, where q; and g, are constants.

A modification to (70) is derived in (E-3) and (E-4), namely,
1

1
—_— .
N N2 (71)

V=

That is, the modification indicates a variance independent of the true value C of the
MSC, through O(N-2).

For the logarithmic transformation, we substitute (51) in (66) and obtain

I,




TR 6445

20 -0, a-0% a0’

-3
vV = + O(N ) . 3
NC NZCZ (72)

———r—

Here, even the O(N-1) term tends o infinity as C—0; this is due to the singularity of
the In(x) transtormation at x =0. Evaluation of the mean square value and variance
of the device output is conducted in appendix D; in particular, for the anomalous
situation at C =0in (72), we find the exact result (D-17):

N-1
V=3 — forC=0 .
k=1 k (73)

Asymptotically this behaves as (D-18):

+ O(N-s) forC =0 .
2N (74)

Thus, whereas the variance of the logarithmic device output tends to zero as N—oo if
C>0, according to (72), the variance siabilizes at n2/6 as N—=o for C =0. This
means that increasing the number of pieces, N, employed in the MSC estimate will
not help in reducing the fluctuations at the device output if C=0. However, il
should be recalled from (58) that the average device output becomes arbitrarily large
negatively in the case of C=0; thus the ratio of standard deviation to average value
does decrease to zero as N—o, for C=0 as well as for C>0. This particular
behavior of'the In(x) transformation is due to the logarithmic singularity at x =0.

For the v-th law device, we employ (59) in (66) and find

a -
2201 - )% V!

V = N

RS
)

[(1+C)% -6uv(1+C) (1-0)

s 6v2(1 - 0% + onY)
(75)

For v=1, this reduces to (67), while for v= 14, it becomes (68). A modification to
the singular component of (75) at C =0 (for v< 1) is obtained in (E-6):

V=

220 - 0)? vl [1 , 201 - 3v( - C))]
N N :

(76)

For v ='~, this reduces to (69). The variance approximation (76) is not singular at
C =0, provided that v 2 2,

15
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MEAN SQUARE ERROR OF
TRANSFORMED COHERENCE ESTIMATE
The desired output of the nonlinear transformation is the non-random constant
¢(C). However, the actual output is g(é ). We therefore torm an average squared
Crror as
- 2
S = E{[g(C) - g(C)] } .
an
But this can be expressed in terms of previously evaluated quantities according to
s = E{[g(©) - Eg©)} + Eg®)} - g(C)1°)
o .2 ° 2 2
= E{{g(C) - E{g(C)}]"} + [E{g(C)} - g(C)]" =V + B |
(78)
where the cross-product term averages 10 zero. When we use the results of (11), (12),
and (66), (78) yields the general result for the mean square error:
2c(1 - 0)° 02 2
§ = = ¢+ ———7-——12g2;'(1 - 6C + 7C%)
N
+ 12g8°C(1 - C) (1 - 20) + 3g"g"c*a1 - ©)?
» agd"cf - 0f) + oY
(79
For the MSC estimate itself, g(x) = x, and (79) yields
21 -0°% 200 -0)% (1 - 6c + €% -3
S = 5 + > + O(N ) s
N
(8
in agreement with reference 4, eq. (12), when the latter is expanded in powers of
NI,
For the MC estimate, g(x) =x', and there follows
(1-0°% a-0%a+ e - 23c% -3
S = - + O(N )
2N 16 2C
N (81)
For the arc tanh (x °) device, use of (25) and (46) in (79) leads to
16




2
S = 5%__ 1 - 14c2+ c ., 0(N'3) .
16N“C (82)

To O(N-, the mean square error is independent of the true value, C, of the MSC.

For the logarithmic transformation, (79) gives

2 2 2
s < 20 ﬁcC) L - C)2 (; * 07, o3
N° C

(83)

This equals variance (72), of course, since the bias is zero to all orders N-k, as shown
in(57).

Finally, the v-th law device g(x) = xV yields, with the help of (79),

2’0 -0l Va - g? c?-?

N NZ

S =

e[(1+C)2 -6u(1+C) -0+ 720 -0 + o

(84)

For v =1, this specializes to (80), while for v= "2, it becomes (81).
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DISCUSSION AND SUMMARY

Asymptotic expressions for the average value, bias, variance, and mean square
error of the output of a nonlinear transformation have been derived, to O(N-2),
Exiensions to higher moments of the device outputl are casily accomplished by
interpreting g in (61) as the appropriate moment of g, as was done in (62) for the
second moment. For example, we could evaluate the third cumulant of g(é) in this
tashion.

The modifications adopted here to attempt to alleviate the singular behavior at
C=0 of the terms of O(N-2), for the arc tanh (x'*) and v-th law devices, are
recognized to be incorrect. The reason for the seemingly anomalous behavior is that
the results here are not uniform asymptotic expansions with respect 1o C. The
proper way to handle these cases is to derive the appropriate uniform asymptotic
expansions. However, this would likely be a time-consuming and tedious task; the
methods of reference 7, chapter 9, would be very relevant in this regard.

It is now a simple matter to evaluate the statistics of any additional candidates for
MSC estimate transformation, such as -ln (1-x), ~(1-x)¥, —-arc tanh ((1-x) ), for
example. These devices are not necessarily suggested for actual use, but rather are
obvious modifications of the ones considered here; they have been chosen 1o be
monotonically increasing over (0, 1).
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Appendix A
Asymptotic Development of First Two Moments
From (7), the n-th moment of Cabout Ciis
1
v o= fdx x)(x - C n
0 p(x) ) A
0
Of coursev, = l,and v, = u, - C, where moment
1
po= f dx p(x) x"
n P (A-2)
0
We now employ reference 4, eq. (5) to obtain
- 1 N = 1 3 .
\)1--C+N+N+1CF(1,1,N+2,C). (A-3)
At this point, we expand all the terms in (A-3) to O(N-2); there follows
2
_ 1 1 11 < C 2C \
Vi= Gyt (1 ‘ﬁ)<1 'N";z‘)c LIRS e By (VY (R S
+ O(N-S)
1 22 c 2\ 2c? -3
= —C+ﬁ+<l-ﬁ+—7—>c<1+ﬁ( -N—)+ =) + O(N'T)
N N
1-02 22xa-0? 3
-0 o, 2xa- + 0N (A-3)
N 2
N
after simplification. Alsou;, = C+v, gives y, to O(N-2).
Forn=2, (A-1) and (A-2) yield
V, = U, - 2Cu, + C2
2 2 1 (A-5)

An expression for u, is given in reference 4, eq. (6); we develop it in like fashion to
(A-4):

W2 2 _) 1 1 1
uz—-N +2N-2+ﬁ+(1—N <l-ﬁ+2-3+4>

(N2 - NC+20) FeoONY) (A-6)

A-l
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where A c . 2C2 '3
- N + 2 (N + 2)(N + 3) L
3 4 ¥
6C 24C -5
TN TN s N D T N *oNT) (A-T)
[ We must keep terms to O(N-4) to counter the N2 terms in (A-6). Substitution of(A-7)
\ in (A-6), expansion of all the products, and retention of the highest orders vields,
[ after considerable manipulation,
“ 2 2 2
‘ 2 4 - - - -
u, = ¢ C(lN 0,20 -0 51 307, oYy .
N (A-8)
Finally, substitution of (A-8) and (A-4) in (A-5) yields E
o - xa - c)? , 201 - 02 a1 - 6c + 7¢%) . o) 1
2 N 2 4 (A-9)

N

Although continuation of the procedure above to higher moments such as u, and
Ky (and thence vy and v,) is possible, it is extremely tedious and error prone. A useful
asymptotic development of (A-1) is proferred in appendix B.




Appendix B
Asymptotic Development of n-th Moment
The n-th moment of interest is given by (7),
1

v = f dx p(x)(x - O, B-1)
0
while p(x) is given by (4). For large N, the probability density p(x) peaks in the
neighborhood of x=C. To see this, we use the asymptotic expansion of the
Legendre polynomial given in reference 10, page 194, eq. 8.21.1:

m+1/2
2 1/2
(Y+()’-1) ) asm>w, fory>1

eml/2? - /e (B-2)

Pm(y) ~

We now identify m =N~ and y = (1 + Cx)/(1-Cx); then (B-2) and (4) yield

1/2 N N-2
(N - 1) a1-c¢ a-x) as N> o for Cx > 0 .

P(x) ~

The function (1-x)/(1- VCx)? peaks at x=C; raising it to a power sharpens this
peak. The exact location of this peak to O(N-!) is considered in appendix F. Sub-
stitution of (B-3) in (B-1) yields

1/2 N N
Vi “‘N'I7§i'17§l‘]f dx(x - O)F 11-;J6; 3 X W,
2m C x/ (1 -x)° (1 -NCX)

as N » o

for C >0

where the integration can be confined to the neighborhood of the peak of the
bracketed functionat x=C.

(B-4)

»

The general problem is now to determine the asymptotic behavior of the integral

Iz fdx(x -0 £) [¢(x)]N (B-5)

as N—+o_ where the integration is confined 1o the neighborhood of the peak of $(x)
at x=C. This problem is undertaken later in this appendix; here we shall merely
make the identifications and evaluate the required parameters. We use only the
dominant term in that asymptotic expansion:
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1 -~Cx - 2
f(x) = 173————”555', ¢o(x) = ——l——li‘ff s :
x7 (1 - x) (1 -NTx)
1 7 -1
b:f =———-—————,b=f= Py
o o c1/4(1 s 1 1 4c5/4(1 C)Z
- 1 -
%= T4 0,
-1 3(1 - 3C)
o) = —————r , b, = ———2
2 xa-0° 3 acta -0t
o = -1 0. = 1 - 3C
2 4wca -0 % scta -0
n 2
B, = (§.+ 1) 4C(1 - C)° for n odd. (B-6)

The result for integral I in (B-5) then becomes

n+l

r("sl) [sca - 02] 2

for n even
+12
a-o¥y Ma oo

r(% + 1)[4(:(1 - C)z]r_21+1 [1 +c+n - 30)]

for n odd
LW
1 -0VN 4« a -l
as N > »
B-7
for C > 0 (B-7)
Substitution in (B-4) and simplification lead to
(‘*
nt 2 -on .
W72 Oor n even
(n/2)!' N
\)n ~ { as N » » . 1
n-1 for C >0 . !
2 n |
ntc® o0-0"[i+c+na - 30))
.QEIT for n odd
n-1 2
- 2% L) N (B-8)
B-2

— — H J



This is the desired general result; particular values are

2 2
(-0 2c(1 - ©)
Vo~ 1s Vi~ N s VY TN

11 -0°a - 20) N 12c2a1 - o

3 NZ >4 NZ

\Y

60C2(1 - C)s(3 ~ 7C) v o~ 120C3(1 - C)6
NS 6 N3
as N> , for C > 0.
(B-9)

Vs

Asymptotic Development of |

The integral of irterest is given in (B-5), where f(C) # 0 and where n is an integer.
$(x) has a maximum at the point C which is interior to the range of integration. We
shall use and extend the procedure given in reference 11, pages 272-274, 1o develop
the asymptotic expansion. We also limit the derivation here to the case of n even;
the extension to n odd is presented without derivation.

LetA=x-Cand

1 4
¢(X)~¢o*'2'!—¢2/3 + 3T 950 +ﬁ¢4A as A+ 0

2 4
= ¢0[1 * Py, A7+ 03A3 + 0, 8 ] s (B-10)
where
o = o™ .
m ’ pm “m! ¢>o
(B-11)
Also let
E(X) ~ £ + £A+ 2 £ A% asa-+0
~ %o 1 20 72
_ 2
= b, +ba+ba” (B-12)
where
f
_ o(m) _m
f = f (C)) b = oy
m m m. (B-]3)

Substitution in (B-5) yields
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1

n 2\ N 2
I~jdA A (bo + b, A+ b2 A ) (bo exp(N ln(l + QZA + 03A3 + p4A4>>
\
N n 2 2 3 4 2.4
00 IdA A (bo *+ b+ bzA) exp<N<pzA *pghT 4 0, - poA /2))
_,N n 2 2
= o, fdA A <bo +bA s bzA) exp<-Nlp2|A )
. exp(Np A3> exp{Nip, - p2/2 A4
3 4 2 ’ (B-14)

where we utilized the fact that p , <0 since ¢(x) peaksat x=C.

Now let t =A/N": in (B-14) and define q = (n+1)/2; then
bt bt )

1 2

I~—fdtt<+1/2+N

N
Pt { -p /2
.exp<'lr->2[t2) exp( i/2>exp\ NZ t4>
N 2
¢ b, t b,t
~_0 2) n 1 2
q Idt exp(-fpzlt t <h° * 73+ =R >
3 2.6 2 :
"z,t L Pst ) s t4)
2N * N

2 3
% t) n 1 >
a I at exP( 0,1t7) (b, + 1727 (1t * Pofst

1 4 2.6 4 2
‘N (b - °2/2> T+ bypgt /2 + byt + byt ))
"’ I 1 2 b 2
o [Pt W 62b0(04 - 02/2) + B3b 05 + B,b 05 + 6D,
2
as N » « , for n even, 5
where
(q)
= L ,» q = L ; 1 for n even .
{B-16)

B
m IQZIm (m - 1)!

The procedure for n odd is exactly as above, except that #(x) and f(x) must be
expanded to one higher order than in (B-10) and (B-12). Al other symtols are as

defined above, except that now




q = % + 1 for n odd . (B-17)

There tollows for (B-5),

o) T'(a) .
I~ =2 a1P1 * BibeP3 * Ngezbo("s 2y
(Nley 1)

+ (283bop3 + szl)<p4 - 03/2)

+ B4bopi + BSblpg + szzp3 + 81b3 i] as N - | for n odd.
(B-18)

The desired asymptotic expansion of integral (B-5) is given by (B-15) and (B-18)
for large N, where N need not be an integer. In deriving (B-7) and (B-8) carlier, we
only used the dominant or leading term of (B-15) and (B-18). Extension of (B-7) and
(B-8) to the next term would require consideration of the correction terms in (B-15)
and (B-18).

For n =0, the leading term of (B-15) reduces to reference 7, pages 211-212, eq.
5.6.21. Thus we have generalized here to nonzero n, both even and odd, and to the
first correction term.
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Appendix C

Modified Approximations For Average Value

The approximation A, developed for the average of the MC estimate in (45) tends
to infinity as C—=0. That is, the b(C) term, (43), which is used in approximation (33),
blows up at C =0. In order to rectify this situation, we reconsider the coefficients

e -C)2 b = (1 - C)2(1 + 2C + scz)
- 2 : N 8C : (C-1)

Both a and b have the common factor (1-C)?; this was also true for the MSC results
in (40). Keeping this factor, we rewrite b in (C-1) as

1 -0)%fa - 0? « acu + cj
8C

a-of u-o0fusg
8C 2

b =

(C-2)

The lead term in (C-2) has a fourth-order zero at C =1, and a smaller scale factor;
therefore its neglect would not significantly affect the value of (C-2) for moderate
C. Also this term contains all of the singularity at C =0. Moreover, since (45) is an
approximation to an asymptotic expansion which is not uniform with respect to C, a
reasonable modification to (C-2) is to drop the singularity while trying to realize as
little effect on larger C values as possible. Accordingly we adopt modified coef-
ficient

T.a- 02 + ©)
B, 2 ;
(C-3)

thereby realizing the modified approximation to (45) for the MC estimate,

- 2 2 1/2
Foafe, -0, -0 0

2 2N ZN2 ' (C-4)

This result agrees precisely to O(N-2) with reference 4, egs. (39) and (33), when the
latter are expanded in a power series in N-1; observe that D = O(N-2) there.

Notice that we have modified the approximation (45), but not the asymptotic
expansion (44); we must accept the asymptotic expansion as it is, since it is the
unique expansion in powers of N-! for this problem. But we can do what we please
with an approximation.

For the arc tanh (x'*) transformation, coefficients a and b are given by (48) as

1. c? b (1 - A+ 2 - cz).

a = 2 ’ = 8C (C_S)
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We regroup the terms in b (keeping the common factor 1-C2 present in both terms)
s0 as to minimize the effect for larger C:

2
_1-cC 2
b-T[(l - Q) +2C(2-C)]
3
_a+0a -0 . (1 - Cz)(Z - C) (C-6)
8C 4 :
The modified coefficient is obtained by dropping the singular term:
- (-He-o
4 ' (C-7)

The moditied approximation for the average value is then

-~ 2 2 1/2
A = arc tanh<<C+ lgNC + (1 -C)(g-C)) >
4N

t

(C-8)

This is an extension of reference 5, egs. (7) and (8).
For the v-th law device considered in (58), the coefficients are repeated from (60):
a = v(l -C)z,b="—(-1-gc—cﬁ[(1 S V) s 2(1 - VC # (1+3\))C2].
(C-9)
Again, regrouping the terms in b, and keeping the common factor (1-C)2, we obtain

2
b=‘_’_(1_£_c_(L[(1 -v)(1 _c)2+4c(1 -v+vC)]

4
J v - ";C“ =0 L1 =) (1 -veO) ,  (C-10)
where the singular factor has the fourth-power of (1-C). The modified coefficient
follows as

b= 201 -C)° (1 -ve+C) . !
(C-11)

(This reduces to (C-3) for v= Y. For v=1, the lead term in (C-10) is already zero,
and (C-10) equals (40).) The modified approximation for the average value of the
output of the v-th law device is

i <c Jva-of we -0t vC))"
2 (C-12) i

N NZ

An approximation to the bias is afforded by subtracting C* from (C-12). i

C-2
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Appendix D
Statistics of Logarithmic Transformation
Average Value
According to (5), the average value of the output of the logarithmic trans-
formation is given by
1
A =] dx p(x) 1n x
0 (D-1)
Instead of using (4) for the probability density, we use reference 1, eq. (3):
1 N N-2
A= dx (N - 1)(1 -C) (1 - x) F(N, N; 1; Cx) 1n x
o (N (N c* 1 N-2 Kk
= (N-1(1 -0C) ) 1) f dx(1 - x) In x .
k=0 k k 0 (D-2)
We now use reference 12, eq. 4.253 1, to get, after simplification,
o (N)
-.a-oV 7_: vk + N) -9k + D] . (py
Then we employ reference 8, egs. 6.3.6, 15.1.1, and 15.3.3 to develop
k
N), C N-2
_ N k 1
A=-0-0" L—g~ L 517y
k=0 3=0
k
© (N) N-2 .
- . k ] k+j
= -(1 - C) Z > dx x , (D-4)
j=0"0
with the latter step taken to realize a product of k and j dependence. Interchanging
summation and integration, and performing the sums (reference 8, ¢q. 15.1.8), we
obtain
1 N-1
as-t-oM e -oo™ L
0 (D-5)
Now let
X y dy
)’=1~x, X=l*y-,dx= ,C1=1-C,(D_6)
(1 +y)
to get
D-1
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0 (1 + Cly)
N-2 oo j
CAE ) [T
j=0 \J 0 (1 +Cy)
N-1-j
NN Gy -2 - gy N2 G
=0 2\ ) T =X WoTod
i=0 v - iZo
k ,
N-T €PNl L
= - —k— - F (1 - C) ;
e 1 (D-7)

we employed reference 12, eq. 3.194 3, to evaluate the integral. Thus the difficult
integral in (D-2) involving powers, a logarithm, and a hypergeometric function
becomes a very simple polynominal in 1-C.

If we express (D-7) for C>0 as

e -0" a-0" -~ -0"
e -:L:‘l n +:‘,:;rsz oot *n§N n ¢ (D9
we can upper-bound the bias (remainder) in (D-8) according to
oo n N
ya-0 -0 [1+ a-0-+a-0%+«a-0%+.. ]
n N
n=N
N
_(1-c)" _ exp(N 1n(1 - C)) }
= e © NC for C >0 . (D-9)
Since C>0, the logarithm in (D-9) is negative, leading to exponential decay of the

bias with N.

Mean Square Value

To determine the variance of the logarithmic output, we need to evaluate, in
addition to (D-1), the mean square value (61):

1
Q = Io dx p(x) (In x)2 . (D-10)

The expression for (D-10) is the obvious modification of (D-2) obtained by
replacing In x by (In x)2. Then using reference 12, eq. 4.261 17, we get (using

C,=1-C)
N (8 c* 2 ' )
Q = c) Z—m-—{[w(k+N)-w(k+1)] ARG
£=0 X

(D-11)

D-2
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Now use reterence 8, €qs. 6.3.6 and 6.4.6, 1o find

. k 2
Ny, C

N-2
N 1
Q =C 2 E —_— + —_— .
1S My \Sok+T+7 50 xk+1+ %) D12

At this point, we have been unable to sum this expression in closed form for
general N. However, defining

] L=-1n(1-C)=E;11-Cn,
n=1

(D-13)
we find that we can evaluate the following cases in closed form for any C:
- 2L -
Q—CIEZfOI’N—Z,
_ 301 3 L _
Q-CI’C+I_C+E<1-C) for N = 3,
C (1 -0 C
C5
Q=__1_§+_1_+_6_+ 25 . 20 R 20
2 ]C C2 C3 1 C (1 - C)Z a - C)3
L ( 22 6
A - B for N =5 (D-14)
C C C.’.’ C3>
Apparently the general solution to (D-12) is of the form
N-2[a b N-2 d
N n n L n
) T ]
il a-o™ Caoc" (D-15)

However we have not been able to determine the general dependence of the coef-
ficients {a }, {b,}, and {d } on N; they are independent of C, of course.

The mean square value, Q, for C=0 and general N follows immediately from

(D-12):
N-1 1 2 N-1 1
Q = =] + — forC=0 .
kz=:1 k :‘:'1 k2 (D-16)

Combined with the result for average A in (D-7), there follows for the variance (65):

N-1

1
vV = Z for C =0 . (D-17
k=1 ?2- )
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An asymptotic expansion for (D-17) for large N is derived by using Watson's “
lemma as follows:
N-1 o o
exp(-t) - exp(-Nt)
v=) f dt t exp(-kt) = I dt t
=1 Y 0 1 - exp(-t)
2 oo
_m ~Nt t .
T 6 j(') dt e 1 - exp(-t)
n Nt 1 P11 ?
~?~f dt e <1+Et)=—6—-ﬁ-—2 as N +» o | k
0 2N

forC =0 , (D-18)

Bz

-

where we used reference 12, eq. 3.411 9. Thus, whereas the variance: of the
logarithmic device output tends to zero as N—o if C > 0 (see (72)), the variance
saturates at n2/6 if C=0. Thus more pieces in the MSC estimate do not lead to
smaller variance for the In x transformation when C=0. To compensate for this
feature, we have already observed in (58) that the average output gets arbitrarily

large as N increases, when C =0. This behavior is due to the singularity of the In x
transformation at x =0.

D-4
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Appendix E

Modified Forms For Variance

The asymptotic expansion for the variance of the MC estimate is given by (68).
We rewrite it as

_a-0® a-0? 2

v [(1 -0
2N 8N C

+4C(1 - SC)] + o(N'S) .
(E-1) }

As explained in appendix C, the singular term has a factor (1-C)* and would not
overly affect the variance approximation for the larger C values if it were dropped.
Thus we obtain the modified variance approximation for the MC estimate as

G- 0 a-0fa-30°

2N 2N2 (E-2)

For the arc tanh (x'?) transformation, we rewrite (70) as

2
V='71W' (1--(:)2 '4C+0(N'3) ,

- 8N° C (E-3)
from which we immediately obtain, upon dropping the singular term, the modifica-
tion

= _ 1 1
V = -ZW + 2N2 .
(E-4)

For the v-th law device, we develop the bracketed term in (75) as

1+0)°% -6v1 +C)(1 -C) + 602 (1 -0)°

= (1-6v+ 6v?) (1 - 0 + ac - 3v(1 - ) . (E

Substituting (E-5) in (75) and discarding the singular term (first term in bracket), we
obtain the modification

= _2%a -0t wia -0t a - sva - )
V= N * ¥

N (E-6)
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Appendix F
Location of Peak of Probability Density Function

The probability density function is given by (4). If we use reference 10, page 194,
eq. 8.21.3, we find that

0 (y_)l/z a-ob a-xh? L. (AT
P As Mt M Ly 16(N - %)Jc?
as N > o | (F-1)

In so far as locating the peak of (F-1), we need only concern ourselves with the
function

4y x) = 2B [1 - —f—(%-] ,
N -5 (F-2)
where
1N 1 -x _ (1 -NTD?
a(x) = g3———3 » b(X) F ——m—7—, f(x) T —F—
x1/4(1 - x)° (1 -NC3) 16NCx
(F-3)

The derivative of (F-2) is (in shorthand notation)

d’ = a'bN[l + —-—f-—-:]+ a.I\JbN"1 b' [1 + ——-f———] abN —f __

+

N N - 3/2 N - 3/2 N - 3/2
(F-4)
Setting dy, = 0, we find we must solve Q =0, where
Q = N% ab’ « N[a'b + ab’ (f - %)] + [a'b(f - g-) + abf']
(F-5)

To highest order, we must set either a or b’ to zero. But from (F-3), a(x)#0 in (0, 1).
Since

bl (X) =‘\JC/X -1 3
(1 -~NCX)

’

(F-6)

we see that to highest order, the peak of dy occurs at
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F-2

Now to find the correction term to x; of O(N"1), we let

(F-8)

in (F-5), obtaining

2 ' I 1 ‘ ’ 3
~ N alb1 + N[alblu + albl u + :«11b1 + alb1 (fl - -2—>] + 0(1)
re Ib
= N[alb1 u+oa; 1] +0(1) , (F-9)

and perforniing the last step by use of by =0. So, o next highest order in N, we have
the correction u in (F-8) as

U e W (D I 1)
alb’l’ a(C) b'(c)
(F-10)
We find from (F-3),
1 1 1 -7C
a(C) = —5———— , a(C) = - ,
4 - ac”’*1 - 0)?
1 ’" -1
b(C) = ,b(C) s — o .
T -C i -0 (F-11)
Substitution in (F-10) yields
u=-2(1-00 - 7)
(F-12)

Combining this with (F-8), we find that the location of the peak of the probability
density function of the MSC estimate, é, is at

(1 -0a0 -7
2N ’ (F-13)

1o O(N-1). The perturbation (F-12) has a maximum value at C=4/7 of value 9/14;
thus the maximum movement of the peak is 9/(14N),

ey
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